版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Prescient Design Genentech United States Department of Computer Science Center for Data Science New York University United States
出 版 物:《arXiv》 (arXiv)
年 卷 期:2024年
核心收录:
摘 要:Machine learning (ML) has demonstrated significant promise in accelerating drug design. Active ML-guided optimization of therapeutic molecules typically relies on a surrogate model predicting the target property of interest. The model predictions are used to determine which designs to evaluate in the lab, and the model is updated on the new measurements to inform the next cycle of decisions. A key challenge is that the experimental feedback from each cycle inspires changes in the candidate proposal or experimental protocol for the next cycle, which lead to distribution shifts. To promote robustness to these shifts, we must account for them explicitly in the model training. We apply domain generalization (DG) methods to classify the stability of interactions between an antibody and antigen across five domains defined by design cycles. Our results suggest that foundational models and ensembling improve predictive performance on out-of-distribution domains. We publicly release our codebase extending the DG benchmark DomainBed, and the associated dataset of antibody sequences and structures emulating distribution shifts across design cycles. © 2024, CC BY-NC-SA.