咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >TIGHT TIME COMPLEXITIES IN PAR... 收藏
arXiv

TIGHT TIME COMPLEXITIES IN PARALLEL STOCHASTIC OPTIMIZATION WITH ARBITRARY COMPUTATION DYNAMICS

作     者:Tyurin, Alexander 

作者机构:AIRI Moscow Russia Skoltech Moscow Russia 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2024年

核心收录:

主  题:Stochastic systems 

摘      要:In distributed stochastic optimization, where parallel and asynchronous methods are employed, we establish optimal time complexities under virtually any computation behavior of workers/devices/CPUs/GPUs, capturing potential disconnections due to hardware and network delays, time-varying computation powers, and any possible fluctuations and trends of computation speeds. These real-world scenarios are formalized by our new universal computation model. Leveraging this model and new proof techniques, we discover tight lower bounds that apply to virtually all synchronous and asynchronous methods, including Minibatch SGD, Asynchronous SGD (Recht et al., 2011), and Picky SGD (Cohen et al., 2021). We show that these lower bounds, up to constant factors, are matched by the optimal Rennala SGD and Malenia SGD methods (Tyurin & Richtárik, 2023). Copyright © 2024, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分