咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Counterfactual Explanations fo... 收藏
arXiv

Counterfactual Explanations for Medical Image Classification and Regression using Diffusion Autoencoder

作     者:Atad, Matan Schinz, David Moeller, Hendrik Graf, Robert Wiestler, Benedikt Rueckert, Daniel Navab, Nassir Kirschke, Jan S. Keicher, Matthias 

作者机构:Department of Diagnostic and Interventional Neuroradiology Klinikum rechts der Isar Technical University of Munich Germany Institute for Artificial Intelligence and Computer Science in Medicine Technical University of Munich Germany Computer Aided Medical Procedures Technical University of Munich Germany AI for Image-Guided Diagnosis and Therapy Technical University of Munich Germany 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2024年

核心收录:

主  题:Labeled data 

摘      要:Counterfactual explanations (CEs) aim to enhance the interpretability of machine learning models by illustrating how alterations in input features would affect the resulting predictions. Common CE approaches require an additional model and are typically constrained to binary counterfactuals. In contrast, we propose a novel method that operates directly on the latent space of a generative model, specifically a Diffusion Autoencoder (DAE). This approach offers inherent interpretability by enabling the generation of CEs and the continuous visualization of the model’s internal representation across decision boundaries. Our method leverages the DAE’s ability to encode images into a semantically rich latent space in an unsupervised manner, eliminating the need for labeled data or separate feature extraction models. We show that these latent representations are helpful for medical condition classification and the ordinal regression of severity pathologies, such as vertebral compression fractures (VCF) and diabetic retinopathy (DR). Beyond binary CEs, our method supports the visualization of ordinal CEs using a linear model, providing deeper insights into the model’s decision-making process and enhancing interpretability. Experiments across various medical imaging datasets demonstrate the method’s advantages in interpretability and versatility. The linear manifold of the DAE’s latent space allows for meaningful interpolation and manipulation, making it a powerful tool for exploring medical image properties. Our code is available at https://***/10.5281/zenodo.13859266. © 2024, CC BY.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分