咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >On the inapproximability of ma... 收藏

On the inapproximability of maximum intersection problems

在最大的交叉问题的 inapproximability 上

作     者:Shieh, Min-Zheng Tsai, Shi-Chun Yang, Ming-Chuan 

作者机构:Natl Chiao Tung Univ Dept Comp Sci Hsinchu Taiwan Natl Chiao Tung Univ Informat & Commun Technol Labs Hsinchu Taiwan 

出 版 物:《INFORMATION PROCESSING LETTERS》 (信息处理快报)

年 卷 期:2012年第112卷第19期

页      面:723-727页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:National Science Council of Taiwan [NSC-97-2221-E-009-064-MY3  NSC-98-2221-E-009-078-MY3] 

主  题:Approximation algorithm Theory of computation Inapproximability Maximum intersection Disclosure control 

摘      要:Given a sets, we want to choose exactly k sets such that the cardinality of their intersection is maximized. This is the so-called MAX-k-INTERSECT problem. We prove that MAX-k-INTERSECT cannot be approximated within an absolute error of 1/2n(1-2 epsilon) + O(n(1-3 epsilon)) unless P = NP. This answers an open question about its hardness. We also give a correct proof of an inapproximable result by Clifford and Papa (2011) [3] by proving that MAX-INTERSECT problem is equivalent to the MAX-CLIQUE problem. (C) 2012 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分