咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Nonsmooth multiobjective progr... 收藏

Nonsmooth multiobjective programming: strong Kuhn-Tucker conditions

Nonsmooth multiobjective 编程: 强壮的 KuhnTucker 条件

作     者:Golestani, M. Nobakhtian, S. 

作者机构:Univ Fasa Dept Math Fasa Iran Univ Isfahan Dept Math Esfahan Iran 

出 版 物:《POSITIVITY》 (正性)

年 卷 期:2013年第17卷第3期

页      面:711-732页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:Center of Excellence for Mathematics  University of Shahrekord  Iran 

主  题:Multiobjective programming Optimality conditions Nonsmooth optimization Duality Constraint qualification 

摘      要:We consider a multiobjective optimization problem with a feasible set defined by inequality and equality constraints and a set constraint, where the objective and constraint functions are locally Lipschitz. Several constraint qualifications are given in such a way that they generalize the classical ones, when the functions are differentiable. The relationships between them are analyzed. Then, we establish strong Kuhn-Tucker necessary optimality conditions in terms of the Clarke subdifferentials such that the multipliers of the objective function are all positive. Furthermore, sufficient optimality conditions under generalized convexity assumptions are derived. Moreover, the concept of efficiency is used to formulate duality for nonsmooth multiobjective problems. Wolf and Mond-Weir type dual problems are formulated. We also establish the weak and strong duality theorems.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分