版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Harbin Inst Technol Sch Elect & Informat Engn Harbin 150001 Peoples R China Qufu Normal Univ Sch Cyber Sci Engn Jining 273165 Peoples R China
出 版 物:《IEEE INTERNET OF THINGS JOURNAL》 (IEEE Internet Things J.)
年 卷 期:2025年第12卷第4期
页 面:3832-3845页
核心收录:
学科分类:0810[工学-信息与通信工程] 0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Natural Science Foundation of China National Key Research and Development Program of China [2021YFB2900500]
主 题:Deep reinforcement learning multiagent resource allocation satellite edge computing task offloading Deep reinforcement learning multiagent resource allocation satellite edge computing task offloading
摘 要:As a supplement to terrestrial communication networks, satellite edge computing can break through geographical limitations and provide on-orbit computing services for people in some remote areas to achieve truly seamless global coverage. Considering time-varying channels, queue delays, and dynamic loads of edge computing satellites, we propose a multiagent task offloading and resource allocation (MATORA) algorithm with weighted latency as the optimization goal. It is a mixed integer nonlinear problem decoupled into task offloading and resource allocation subproblems. For the offloading subproblem, we propose a distributed multiagent deep reinforcement learning algorithm, and each agent generates its own offloading decision without knowing the prior knowledge of others. We show that the resource allocation problem is convex and can be solved using convex optimization methods. The experiment shows that the proposed algorithm can better adapt to the change of channel and the dynamic load of edge computing satellite, and it can effectively reduce task latency and task drop rate.