版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Alabama Dept Math Tuscaloosa AL 35487 USA Czech Acad Sci Inst Math Zitna 25 Prague 1 Czech Republic I Javakhishvili Tbilisi State Univ Fac Exact & Nat Sci Univ St 2 Tbilisi 0143 Georgia
出 版 物:《JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS》 (J. Math. Anal. Appl.)
年 卷 期:2025年第544卷第2期
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Simons Foundation Travel Support for Mathematicians Grant NSF [DMS-2349550] Czech Academy of Sciences [RVO: 67985840] Czech Science Foundation (GACR) [23-04720S] Shota Rustaveli National Science Foundation (SRNSF) [FR 21-12353]
主 题:Banach function spaces Variable Lebesgue spaces Zygmund spaces
摘 要:We give a sharp sufficient condition on the distribution function, |{x is an element of Q : p ( x ) 0, of the exponent function p () : Q - [1, infinity) that implies the embedding of the variable Lebesgue space L p ( ) (Q) into the Orlicz space L (log L ) alpha (Q), alpha 0, where Q is an open set with finite Lebesgue measure. As applications of our results, we first give conditions that imply the strong differentiation of integrals of functions in L p ( ) ((0 , 1)n), n 1. We then consider the integrability of the maximal function on variable Lebesgue spaces, where the exponent function p () approaches 1 in value on some part of the domain. This result is an improvement of the result in [6]. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.