咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Online regularity learning-bas... 收藏

Online regularity learning-based evolutionary multiobjective optimization and its application in aircraft trajectory planning

作     者:Lu, Yulan Wang, Haoyue Yu, Jiamin Sun, Xin Si, Xinhui Zhang, Hu 

作者机构:Univ Sci & Technol Beijing Sch Math & Phys Beijing 100083 Peoples R China CASIC Res Inst Intelligent Decis Engn Beijing 100074 Peoples R China 

出 版 物:《INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS》 (Intl. J. Mach. Learn. Cybern.)

年 卷 期:2024年

页      面:1-29页

核心收录:

基  金:Fundamental Research Funds for the Central Universities National Natural Science Foundation of China [12072024, 12301419] FRF-TP-20-068A1 

主  题:Evolutionary algorithms Multiobjective optimization Regularity property of multiobjective optimization problem Online agglomerative clustering Aircraft trajectory planning 

摘      要:A continuous m-objective optimization problem exhibits a regularity property under mild conditions, such that the Pareto set of the multiobjective optimization problem (MOP) forms an (m-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m-1)$$\end{document}-dimensional piecewise continuous manifold. Leveraging this regularity in the design of multiobjective evolutionary algorithms can be advantageous. In this paper, we propose an online regularity learning-based evolutionary multiobjective optimization (OCEMO) algorithm. Given that the data generated by evolutionary algorithms are typically non-stationary and independent, OCEMO integrates an online clustering approach directly into the evolutionary process at the operator level. After each generation of evolution, a clustering iteration is performed to gradually uncover the regular structure of the Pareto set. The learned neighborhood relationships among solutions are then used to serve the mating selection and guide the search process within the algorithm. Experimental results demonstrate that OCEMO significantly outperforms several state-of-the-art multiobjective evolutionary algorithms on complex test suites and in a real-world application of aircraft trajectory planning.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分