版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Swiss Fed Inst Technol Inst Dynam Syst & Control CH-8052 Zurich Switzerland Sch Engn & Appl Sci Harvard MA 02138 USA
出 版 物:《IEEE CONTROL SYSTEMS LETTERS》 (IEEE Control Syst. Lett.)
年 卷 期:2024年第8卷
页 面:3249-3254页
核心收录:
基 金:Swiss National Science Foundation [51NF40 180545] ETH Career Seed Award through the ETH Zurich Foundation
主 题:Uncertainty Kalman filters State-space methods Stochastic processes Technological innovation Predictive models Predictive control Maximum likelihood estimation Noise Noise measurement Predictive control for linear systems data driven control identification for control
摘 要:We propose a novel data-driven stochastic model predictive control framework for uncertain linear systems with noisy output measurements. Our approach leverages multi-step predictors to efficiently propagate uncertainty, ensuring chance constraint satisfaction. In particular, we present a strategy to identify multi-step predictors and quantify the associated uncertainty using a surrogate (data-driven) state space model. Then, we utilize the derived distribution to formulate a constraint tightening that ensures chance constraint satisfaction despite the parametric uncertainty. A numerical example highlights the reduced conservatism of handling parametric uncertainty in the proposed method compared to state-of-the-art solutions.