咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Stochastic Data-Driven Predict... 收藏

Stochastic Data-Driven Predictive Control: Chance-Constraint Satisfaction With Identified Multi-Step Predictors

作     者:Balim, Haldun Carron, Andrea Zeilinger, Melanie N. Kohler, Johannes 

作者机构:Swiss Fed Inst Technol Inst Dynam Syst & Control CH-8052 Zurich Switzerland Sch Engn & Appl Sci Harvard MA 02138 USA 

出 版 物:《IEEE CONTROL SYSTEMS LETTERS》 (IEEE Control Syst. Lett.)

年 卷 期:2024年第8卷

页      面:3249-3254页

核心收录:

基  金:Swiss National Science Foundation [51NF40 180545] ETH Career Seed Award through the ETH Zurich Foundation 

主  题:Uncertainty Kalman filters State-space methods Stochastic processes Technological innovation Predictive models Predictive control Maximum likelihood estimation Noise Noise measurement Predictive control for linear systems data driven control identification for control 

摘      要:We propose a novel data-driven stochastic model predictive control framework for uncertain linear systems with noisy output measurements. Our approach leverages multi-step predictors to efficiently propagate uncertainty, ensuring chance constraint satisfaction. In particular, we present a strategy to identify multi-step predictors and quantify the associated uncertainty using a surrogate (data-driven) state space model. Then, we utilize the derived distribution to formulate a constraint tightening that ensures chance constraint satisfaction despite the parametric uncertainty. A numerical example highlights the reduced conservatism of handling parametric uncertainty in the proposed method compared to state-of-the-art solutions.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分