咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A Generative Model-Based Netwo... 收藏

A Generative Model-Based Network Framework for Ecological Data Reconstruction

作     者:Shuqiao Liu Zhao Zhang Hongyan Zhou Xuebo Chen 

作者机构:School of Electronic and Information EngineeringUniversity of Science and Technology LiaoningAnshan114051China School of Computer Science and Software EngineeringUniversity of Science and Technology LiaoningAnshan114051China 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2025年第82卷第1期

页      面:929-948页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 

基  金:supported by the Fundamental Research Funds for the Liaoning Universities(LJ212410146025) 

主  题:Convolutional Neural Network(CNN) VAE GAN TOPSIS data reconstruction 

摘      要:This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data *** model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT *** model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample *** data is used to retain more semantic information to generate *** model was applied to species in Southern California,USA,citing SWOT analysis data to train the *** show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development *** model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data *** study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分