咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Cloud and Cloud Shadow Detecti... 收藏

Cloud and Cloud Shadow Detection for Multi-Modal Imagery With Gap-Filling Applications

作     者:Cho, Keunhoo Park, Seongwook Seong, Boram Lee, Seongwhan Park, Jae-Pil 

作者机构:Nara Space Technol Inc Seoul 07245 South Korea 

出 版 物:《IEEE ACCESS》 (IEEE Access)

年 卷 期:2025年第13卷

页      面:7396-7406页

核心收录:

主  题:Transformers Remote sensing Earth Satellite images Artificial satellites Cloud computing Training Spatial resolution Computational modeling Deep learning Clouds cloud shadows multi-modal imagery KOMPSAT-3 KOMPSAT-3A Sentinel-2 Landsat-8 swin transformer 

摘      要:Cloud and cloud shadow (CCS) detection algorithms play a crucial role in the preprocessing of remote sensing data and directly affect the accuracy of subsequent analyses, making them an essential step in most analytical processes. Recent techniques for detecting CCS often employ deep learning methods, which are effective but typically require extensive training data specific to each type of satellite imagery. This study presents a new methodology that applies a model trained on the preconstructed KOMPSAT-3/3A CCS dataset to Landsat-8 and Sentinel-2 satellite imagery. The experimental results demonstrated that the CCS detection model based on KOMPSAT-3/3A achieved a mean F1 score of 0.846 on the test dataset. When applied to Landsat-8 SPARCS and Sentinel-2 CloudSEN12 test datasets, it also showed high performance, with mean F1 scores of 0.741 and 0.8, respectively, effectively indicating that multi-modal CCS detection can be successfully implemented. Applying this model to different sensor imagery confirmed its effectiveness in gap filling, which can be utilized to enhance time-series analyses where continuous monitoring is required. In conclusion, this approach not only proves beneficial for time-series analysis but also significantly reduces the time and effort required to build datasets in deep learning-based CCS detection.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分