版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Chinese Acad Sci Fujian Inst Res Struct Matter State Key Lab Struct Chem Fuzhou 350002 Peoples R China Univ Chinese Acad Sci Sch Chem Sci Beijing 101408 Peoples R China Tamkang Univ Dept Phys New Taipei City 251301 Taiwan Natl Synchrotron Radiat Res Ctr Hsinchu 30076 Taiwan Fuzhou Univ Natl Engn Res Ctr Chem Fertilizer Catalyst Fuzhou 350002 Peoples R China
出 版 物:《ADVANCED FUNCTIONAL MATERIALS》 (Adv. Funct. Mater.)
年 卷 期:2025年第35卷第19期
核心收录:
学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 0702[理学-物理学]
基 金:National Key Research and Development Program of China National Natural Science Foundation of China [22475214, 22205232, 22222801, 21601187] Talent Plan of Shanghai Branch, Chinese Academy of Sciences [CASSHB-QNPD-2023-020] Natural Science Foundation of Fujian Province [2023J06044, 2023J01213] Self-deployment Project of Haixi Institutes, Chinese Academy of Sciences [CXZX-2022-JQ06, CXZX-2022-GH03] Transmission Electron Microscope Platform and High-performance Computing Platform of Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China 2022YFA1505700
主 题:electrocatalysis energy conversion hydrogen evolution hydrazine oxidation self-powered
摘 要:Exploring advanced electrolysis techniques for attaining scene-adaptive and on-site green H2 production is an imperative matter of utmost practical significance but grand challenge remains. Herein, drawn inspiration from a spontaneous hydrazine-H2O galvanic cell configured on a low-valence Ru single atoms-loaded Mo2C electrode (RuSA/v-Mo2C), an alternative H2 energy solution utilizing self-powered electrochemical hydrazine splitting (N2H4 - 2H2 + N2) instead of the stereotyped electricity-consumed water splitting for green H2 production is proposed. This solution highlights a pH-decoupled hydrazine-H2O primary battery with notable open-circuit voltage of 1.37 V and energy density up to 358 Wh gN2H4-1, which powerfully propels an alkaline hydrazine splitting cell, leading to bilateral H2 harvest with a remarkable rate of 18 mol h-1 m-2, i.e., 403.2 L h-1 m-2, setting a new record for the self-sustaining electricity-powered H2 production systems. The success of RuSA/v-Mo2C for this solution is further decoded by tandem theoretical and in situ spectroscopic studies, cross-verifying a Ru-Mo dual-site synergy in streamlining the overall energy barriers, thereby enhancing the kinetics of electrode reactions. This pioneering work, showcasing electrochemical H2 production free from both external energy and feedstock inputs, opens up a new horizon on way of the ultimate H2 energy solution.