咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Homogenization based topology ... 收藏

Homogenization based topology optimization of a coupled thermal fluid-structure problem

作     者:Agyekum, Godfred Oheneba Cangemi, Laurent Jouve, Francois 

作者机构:IFP Energies Nouvelles F-92852 Rueil Malmaison France Univ Paris Cite Lab Jacques Louis LJLL L F-75006 Paris France 

出 版 物:《COMPUTERS & STRUCTURES》 (Comput Struct)

年 卷 期:2025年第308卷

核心收录:

学科分类:08[工学] 0814[工学-土木工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:IFPEN: IFP energies nouvelles Pierre Viot: design and simulation engineer at IFPEN 

主  题:Topology optimization Multi-scale Periodic homogenization Porous medium Adjoint methods Fluid-structure interaction Convective heat-transfer 

摘      要:This article focuses on the topology optimization of a weakly coupled three physics problem. The structures are made of periodically perforated material, where the microscopic periodic cell is macroscopically modulated. The objective is to optimize the homogenized formulation of this system, where the coupling is weak because the three physics involved are solved consecutively: first, a coupled fluid flow is determined using the Biot-Darcy s law for the fluid domain, second, a thermal model using the convection-diffusion equation for the whole domain, and third, a three-physics problem by solving the linear poro-thermo elasticity problem in the solid domain. This approach allows low computational cost of evaluation of load sensitivities using the adjoint-state method. Twodimensional and three-dimensional numerical problems are presented using the alternate directions algorithm. It is demonstrated how the implementation makes it possible to treat a variety of design problems.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分