版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:哈尔滨商业大学管理学院哈尔滨150028
出 版 物:《计算机应用研究》 (Application Research of Computers)
年 卷 期:2025年第42卷第1期
页 面:78-85页
学科分类:08[工学] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:2023年哈尔滨商业大学青年科研创新人才培育计划资助项目(2023-KYYWF-1001) 黑龙江省博士后科研启动金资助项目(BS0053)
摘 要:推荐系统中因交互数据稀疏性和曝光不均导致的强曝光偏差,会集中推荐高曝光物品,忽略低曝光物品的潜在价值,从而限制用户选择并降低用户体验。为解决这一问题,提出一种结合神经协同过滤和线性置信上界算法的去曝光偏差模型。首先,通过分析用户与物品之间的交互数据,利用神经协同过滤算法学习用户和物品的特征,捕捉其潜在偏好;其次,引入线性置信上界算法,并将其生成的奖励值特征嵌入到神经协同过滤模型中,以增强模型对低曝光物品的探索能力;最后,在MovieLens-100K和MovieLens-1M数据集上进行实验,结果显示,与传统的神经协同过滤模型相比,该模型的曝光度提升了约60%,说明其能够有效地缓解曝光偏差,并提高推荐的准确性和公平性,进一步验证了该模型的有效性。