咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Enhanced YOLOv8 framework for ... 收藏

Enhanced YOLOv8 framework for precision vehicle detection in high-resolution remote sensing images

作     者:Shao, Zhaowei He, Kunyu Yuan, Baohua Xu, Sheng 

作者机构:Nanjing Forestry Univ Coll Informat Sci & Technol & Artificial Intellige Nanjing Jiangsu Peoples R China Changzhou Univ Coll Informat Sci & Engn Changzhou Jiangsu Peoples R China 

出 版 物:《SIGNAL IMAGE AND VIDEO PROCESSING》 (Signal Image Video Process.)

年 卷 期:2025年第19卷第3期

页      面:1-10页

核心收录:

学科分类:0808[工学-电气工程] 1002[医学-临床医学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 

主  题:Object detection High-resolution remote sensing imagery Multi-scale feature representation Real-time processing 

摘      要:Vehicle detection in high-resolution remote sensing imagery faces challenges such as varying scales, complex backgrounds, and high intra-class variability. We propose an enhanced YOLOv8 framework, incorporating three key advancements: the Adaptive Feature Pyramid Network (AFPN), Omni-Dimensional Convolution (ODConv), and a Slim Neck with Generalized Shuffle Convolution (GSConv). These enhancements improve vehicle detection accuracy, computational efficiency, and visual AI capabilities for applications such as computer animation and virtual worlds. Our model achieves a Mean Average Precision (mAP) of 0.7153, representing a 4.99% improvement over the baseline YOLOv8. Precision and recall increase to 0.9233 and 0.9329, respectively, while box loss is reduced from 1.213 to 1.054. This framework supports real-time surveillance, traffic monitoring, and urban planning. The NEPU-OWOD V2.0 dataset, used for evaluation, includes high-resolution images from multiple regions and seasons, along with diverse annotations and augmentations. Our modular approach allows for separate assessments of each enhancement. The dataset and source code are available for future research and development at (https://***/10.5281/zenodo.13075939).

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分