咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >GAUSS MAPS OF MÖBIUS SURFACES ... 收藏
arXiv

GAUSS MAPS OF MÖBIUS SURFACES IN THE n-DIMENSIONAL SPHERE

作     者:Brander, David Kobayashi, Shimpei Wang, Peng 

作者机构:Department of Applied Mathematics and Computer Science Technical University of Denmark Lyngby Copenhagen2800 Denmark Department of Mathematics Hokkaido University Sapporo060-0810 Japan  Fujian Normal University Fuzhou350117 China 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2024年

核心收录:

主  题:Gaussian distribution 

摘      要:In this note we discuss Gauss maps for Möbius surfaces in the n-sphere, and their applications in the study of Willmore surfaces. One such Gauss map, naturally associated to a Willmore surface that has a dual Willmore surface, is the Lorentzian 2-plane bundle given by a lift of the suface and its dual. More generally, we define the concept of a Lorentzian 2-plane lift for an arbitrary Möbius surface, and show that the conformal harmonicity of this lift is equivalent to the Willmore condition for the surface. This clarifies some previous work of F. Hélein, Q. Xia-Y Shen, X. Ma and others, and, for instance, allows for the treatment of the Björling problem for Willmore surfaces in the presence of *** Codes Primary~53A31, 53C43, Secondary~58E20, 53C35 Copyright © 2024, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分