咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >STDHL: Spatio-Temporal Dynamic... 收藏
arXiv

STDHL: Spatio-Temporal Dynamic Hypergraph Learning for Wind Power Forecasting

作     者:Dong, Xiaochong Zhang, Xuemin Yang, Ming Mei, Shengwei 

作者机构:State Key Laboratory of Power System Operation and Control Department of Electrical Engineering Tsinghua University Beijing100084 China Key Laboratory of Power System Intelligent Dispatch and Control Shandong University Jinan250061 China 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2024年

核心收录:

主  题:Wind forecasting 

摘      要:Leveraging spatio-temporal correlations among wind farms can significantly enhance the accuracy of ultra-short-term wind power forecasting. However, the complex and dynamic nature of these correlations presents significant modeling challenges. To address this, we propose a spatio-temporal dynamic hypergraph learning (STDHL) model. This model uses a hypergraph structure to represent spatial features among wind farms. Unlike traditional graph structures, which only capture pair-wise node features, hypergraphs create hyperedges connecting multiple nodes, enabling the representation and transmission of higher-order spatial features. The STDHL model incorporates a novel dynamic hypergraph convolutional layer to model dynamic spatial correlations and a grouped temporal convolutional layer for channel-independent temporal modeling. The model uses spatio-temporal encoders to extract features from multi-source covariates, which are mapped to quantile results through a forecast decoder. Experimental results using the GEFCom dataset show that the STDHL model outperforms existing state-of-the-art methods. Furthermore, an in-depth analysis highlights the critical role of spatio-temporal covariates in improving ultra-short-term forecasting accuracy. Copyright © 2024, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分