咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Bounded Exploration with World... 收藏
arXiv

Bounded Exploration with World Model Uncertainty in Soft Actor-Critic Reinforcement Learning Algorithm

作     者:Qiao, Ting Williams, Henry Valencia, David MacDonald, Bruce 

作者机构:Centre for Automation and Robotic Engineering Science The University of Auckland New Zealand 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2024年

核心收录:

主  题:Adversarial machine learning 

摘      要:One of the bottlenecks preventing Deep Reinforcement Learning algorithms (DRL) from real-world applications is how to explore the environment and collect informative transitions efficiently. The present paper describes bounded exploration, a novel exploration method that integrates both soft and intrinsic motivation exploration. Bounded exploration notably improved the Soft Actor-Critic algorithm s performance and its model-based extension s converging speed. It achieved the highest score in 6/8 experiments. Bounded exploration presents an alternative method to introduce intrinsic motivations to exploration when the original reward function has strict meanings. © 2024, CC BY.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分