咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Robust globally divergence-fre... 收藏
arXiv

Robust globally divergence-free HDG finite element method for steady thermally coupled incompressible MHD flow

作     者:Zhang, Min Zhu, Zimo Zhai, Qijia Xie, Xiaoping 

作者机构:Institute of Mathematics Henan Academy of Sciences Zhengzhou450046 China College of Mathematies and Information Science Henan Normal University Xinxiang453007 China Chengdu aircraft design and Research Institute Chengdu610041 China School of Mathematics Sichuan University Chengdu610064 China Computer Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology Thuwal23955 Saudi Arabia 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2024年

核心收录:

主  题:Galerkin methods 

摘      要:This paper develops an hybridizable discontinuous Galerkin (HDG) finite element method of arbitrary order for the steady thermally coupled incompressible Magnetohydrodynamics (MHD) flow. The HDG scheme uses piecewise polynomials of degrees k(k ≥ 1), k, k − 1, k − 1 and k respectively for the approximations of the velocity, the magnetic field, the pressure, the magnetic pseudo-pressure, and the temperature in the interior of elements, and uses piecewise polynomials of degree k for their numerical traces on the interfaces of elements. The method is shown to yield globally divergence-free approximations of the velocity and magnetic fields. Existence and uniqueness results for the discrete scheme are given and optimal a priori error estimates are derived. Numerical experiments are provided to verify the obtained theoretical results. © 2024, CC BY.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分