版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Stanford Univ Dept Stat Stanford CA 94305 USA Univ Calif Los Angeles Dept Stat Los Angeles CA 90095 USA
出 版 物:《JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION》 (J. Am. Stat. Assoc.)
年 卷 期:2000年第95卷第449期
页 面:121-134页
核心收录:
学科分类:0202[经济学-应用经济学] 02[经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)]
主 题:adaptive direction sampling conjugate gradient damped sinusoidal Gibbs sampling griddy Gibbs sampler hit-and-run algorithm Markov chain Monte Carlo metropolis algorithm mixture model orientational bias Monte Carlo
摘 要:This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling. we propose a novel method for incorporating local optimization steps into a MCMC sampler in continuous state-space. Numerical studies show that the new method performs significantly better than the traditional Metropolis-Hastings (M-H) sampler. With minor tailoring in using the rule, the multiple-try method can also be exploited to achieve the effect of a griddy Gibbs sampler without having to bear with griddy approximations, and the effect of a hit-and-run algorithm without having to figure out the required conditional distribution in a random direction.