版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Shenzhen CyberAray Network Technology Co. Ltd China Chinese Academy of Sciences Shanghai Advanced Research Institute China Meta-Networking Research Center China The University of Electro-Communications Graduate School of Informatics and Engineering Tokyo Japan National Institute of Informatics Information Systems Architecture Research Division Tokyo Japan Lancaster University School of Computing and Communications Ukraine AXON Logic Greece City University of Macau Faculty of Data Science Macau China China
出 版 物:《IEEE Network》 (IEEE Network)
年 卷 期:2024年
核心收录:
学科分类:0810[工学-信息与通信工程] 1205[管理学-图书情报与档案管理] 1202[管理学-工商管理] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0808[工学-电气工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0714[理学-统计学(可授理学、经济学学位)] 0835[工学-软件工程] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:This article investigates a control system within the context of sixth-generation wireless networks. The remote control performance optimization confronts the technical challenges that arise from the intricate interactions between communication and control sub-systems, asking for a co-design. Considering the system dynamics, we formulate the sequential co-design decision-makings of communication and control over a discrete time horizon as a Markov decision process, for which a practical offline learning framework is proposed. Our proposed framework integrates large language models into the elements of reinforcement learning. We present a case study on the age of semantics-aware communication and control co-design to showcase the potential of our proposed learning framework. Furthermore, we discuss the open issues remaining to make our offline learning framework feasible for real-world implementations and highlight the research directions for future explorations. © 1986-2012 IEEE.