版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:School of Physics Beijing Institute of Technology Beijing100081 China Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement Ministry of Education Beijing Institute of Technology Beijing100081 China Shenzhen Institute for Quantum Science and Engineering Department of Physics Southern University of Science and Technology Shenzhen518055 China
出 版 物:《arXiv》 (arXiv)
年 卷 期:2024年
核心收录:
摘 要:The generation of time-reversal-odd spin-current in metallic altermagnets has attracted considerable interest in spintronics. However, producing pure spin-current in insulating materials remains both challenging and desirable, as insulating states are frequently found in antiferromagnets. Nonlinear photogalvanic effects offer a promising method for generating spin-current in insulators. We here revealed that spin and charge photocurrents in altermagnets are protected by spin point group symmetry. Unlike the photocurrents in parity-time symmetric materials, where spin-orbit coupling (SOC) induces a significant charge current, the spin-current in altermagnets can exist as a pure spin current along specific crystal directions regardless of SOC. We applied our predictions using first-principles calculations to several distinct materials, including wurtzite MnTe and multiferroic BiFeO3. Additionally, we elucidated the previously overlooked linear-inject-current mechanism in BiFeO3 induced by SOC, which may account for the enhanced bulk photovotaic effect in multiferroics. © 2024, CC BY.