版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Shenzhen Univ Coll Mat Sci & Engn Guangdong Res Ctr Interfacial Engn Funct Mat Shenzhen Key Lab Energy Electrocatalyt Mat Shenzhen 518055 Guangdong Peoples R China Shenzhen Univ Coll Phys & Optoelect Engn Shenzhen 518060 Guangdong Peoples R China Univ Toronto Dept Mat Sci & Engn 184 Coll St Toronto ON M5S 3E4 Canada Canadian Light Source Inc 44 Innovat Blvd Saskatoon SK S7N 0X4 Canada
出 版 物:《ADVANCED FUNCTIONAL MATERIALS》 (Adv. Funct. Mater.)
年 卷 期:2025年第35卷第19期
核心收录:
学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 0702[理学-物理学]
基 金:National Natural Science Foundation of China Shenzhen Science and Technology Program [ZDSYS20220527171401003, RCBS20231211090519029, KQTD20190929173914967] 22309116
主 题:direct hydrazine fuel cell hydrazine oxidation ruthenium cluster self-powered hydrogen production
摘 要:The hydrazine-assisted water splitting (HzAWS) is promising for energy-saving hydrogen production. However, developing efficient bifunctional catalysts that exert hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) at industrial-grade current densities remains challenging. Here, RuC-NiCoP catalyst, ruthenium clusters (RuC) immobilized onto NiCoP, is developed to elucidate the superior performance of RuC in enhancing bifunctional electrocatalytic activity over ruthenium single atoms (RuSA). The RuC-NiCoP achieves current densities of 10 and 100 mA cm-2 for HER and HzOR with working potentials of -10 and -89 mV, respectively, outperforming RuSA-NiCoP (-16 and -65 mV). During HzAWS, a cell voltage reduction of 1.77 V at 300 mA cm-2 is observed compared to overall water splitting. Density functional theory calculations reveal that RuC improves the adsorption energy for H2O and N2H4, optimizes the H* intermediate desorption, and reduces the dehydrogenation barrier from *N2H3 to *N2H2. Additionally, the direct hydrazine fuel cell with a RuC-NiCoP anode delivers an impressive power density of 226 mW cm-2 and enables a self-powered hydrogen production system, achieving an unprecedented hydrogen production rate of 4.9 mmol cm-2 h-1. This work offers a new perspective on developing efficient sub-nanoscale bifunctional electrocatalysts and advancing practical energy-saving hydrogen production techniques.