版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Department of Engineering Science University of Oxford Parks Road OxfordOX1 3PJ United Kingdom Département de Physique Appliquée Université de Genève Genève1211 Switzerland Atominstitut TU Wien Vienna1020 Austria Department of Materials University of Oxford Parks Road OxfordOX1 3PH United Kingdom Institute of Science and Technology Austria Am Campus 1 Klosterneuburg3400 Austria L-NESS Physics Department Politecnico di Milano via Anzani 42 Como22100 Italy School of Physics Trinity College Dublin College Green Dublin 2 D02 K8N4 Ireland Trinity Quantum Alliance Unit 16 Trinity Technology and Enterprise Centre Pearse Street Dublin 2 D02 YN67 Ireland Física Teòrica Informació i Fenòmens Quàntics Department de Física Universitat Autònoma de Barcelona Bellaterra Barcelona08193 Spain
出 版 物:《arXiv》 (arXiv)
年 卷 期:2024年
核心收录:
主 题:Semiconductor quantum dots
摘 要:The conversion of thermal energy into work is usually more efficient in the slow-driving regime, where the power output is vanishingly small. Efficient work extraction for fast driving protocols remains an outstanding challenge at the nanoscale, where fluctuations play a significant role. In this Letter, we use a quantum-dot Szilard engine to extract work from thermal fluctuations with maximum efficiency over two decades of driving speed. We design and implement a family of optimised protocols ranging from the slow- to the fast-driving regime, and measure the engine’s efficiency as well as the mean and variance of its power output in each case. These optimised protocols exhibit significant improvements in power and efficiency compared to the naive approach. Our results also show that, when optimising for efficiency, boosting the power output of a Szilard engine inevitably comes at the cost of increased power fluctuations. © 2024, CC BY.