版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Institute of AutomationChinese Academy of SciencesBeijing 100190China School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing 100049China Department of Computing ScienceUniversity of AlbertaEdmonton T6G 2E8Canada School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing 100049China
出 版 物:《Machine Intelligence Research》 (机器智能研究(英文版))
年 卷 期:2025年第22卷第2期
页 面:267-288页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by National Key R&D Program of China(No.2022ZD0116405) the Strategic Priority Research Program of the Chinese Academy of Sciences,China(No.XDA27030300)
主 题:Hierarchical reinforcement learning representation learning latent landmark graph contrastive learning exploration and exploitation.
摘 要:Goal-conditioned hierarchical reinforcement learning(GCHRL)decomposes the desired goal into subgoals and conducts exploration and exploitation in the subgoal *** effectiveness heavily relies on subgoal representation and ***,existing works do not consider distinct information across hierarchical time scales when learning subgoal representations and lack a subgoal selection strategy that balances exploration and *** this paper,we propose a novel method for efficient exploration-exploitation balance in HIerarchical reinforcement learning by dynamically constructing Latent Landmark graphs(HILL).HILL transforms the reward maximization problem of GCHRL into the shortest path planning on *** effectively consider the hierarchical time-scale information,HILL adopts a contrastive representation learning objective to learn informative latent *** on these representations,HILL dynamically constructs latent landmark graphs and selects subgoals using two measures to balance exploration and *** implement two variants:HILL-hf generates graphs periodically,while HILL-lf generates graphs *** results on continuous control tasks with sparse rewards demonstrate that both variants outperform state-of-the-art baselines in sample efficiency and asymptotic performance,with HILL-lf further reducing training time by 40%compared to HILL-hf.