咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >PromptFusion:Harmonized Semant... 收藏

PromptFusion:Harmonized Semantic Prompt Learning for Infrared and Visible Image Fusion

作     者:Jinyuan Liu Xingyuan Li Zirui Wang Zhiying Jiang Wei Zhong Wei Fan Bin Xu 

作者机构:IEEE the School of Software Technology Dalian University of Technology the School of Mechanical Engineering Beijing Institute of Technology 

出 版 物:《IEEE/CAA Journal of Automatica Sinica》 (自动化学报(英文版))

年 卷 期:2025年第12卷第3期

页      面:502-515页

核心收录:

学科分类:080901[工学-物理电子学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 080401[工学-精密仪器及机械] 080203[工学-机械设计及理论] 0804[工学-仪器科学与技术] 0802[工学-机械工程] 0803[工学-光学工程] 

基  金:partially supported by China Postdoctoral Science Foundation (2023M730741) the National Natural Science Foundation of China (U22B2052, 52102432, 52202452, 62372080, 62302078) 

主  题:Bi-level optimization image fusion infrared and visible image prompt learning 

摘      要:The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene. However, existing methods struggle to effectively handle modal disparities,resulting in visual degradation of the details and prominent targets of the fused images. To address these challenges, we introduce Prompt Fusion, a prompt-based approach that harmoniously combines multi-modality images under the guidance of semantic prompts. Firstly, to better characterize the features of different modalities, a contourlet autoencoder is designed to separate and extract the high-/low-frequency components of different modalities, thereby improving the extraction of fine details and textures. We also introduce a prompt learning mechanism using positive and negative prompts, leveraging Vision-Language Models to improve the fusion model s understanding and identification of targets in multi-modality images, leading to improved performance in downstream tasks. Furthermore, we employ bi-level asymptotic convergence optimization. This approach simplifies the intricate non-singleton non-convex bi-level problem into a series of convergent and differentiable single optimization problems that can be effectively resolved through gradient *** approach advances the state-of-the-art, delivering superior fusion quality and boosting the performance of related downstream tasks. Project page: https://***/hey-it-s-me/PromptFusion.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分