版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:IEEE the School of Software Technology Dalian University of Technology the School of Mechanical Engineering Beijing Institute of Technology
出 版 物:《IEEE/CAA Journal of Automatica Sinica》 (自动化学报(英文版))
年 卷 期:2025年第12卷第3期
页 面:502-515页
核心收录:
学科分类:080901[工学-物理电子学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 080401[工学-精密仪器及机械] 080203[工学-机械设计及理论] 0804[工学-仪器科学与技术] 0802[工学-机械工程] 0803[工学-光学工程]
基 金:partially supported by China Postdoctoral Science Foundation (2023M730741) the National Natural Science Foundation of China (U22B2052, 52102432, 52202452, 62372080, 62302078)
主 题:Bi-level optimization image fusion infrared and visible image prompt learning
摘 要:The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene. However, existing methods struggle to effectively handle modal disparities,resulting in visual degradation of the details and prominent targets of the fused images. To address these challenges, we introduce Prompt Fusion, a prompt-based approach that harmoniously combines multi-modality images under the guidance of semantic prompts. Firstly, to better characterize the features of different modalities, a contourlet autoencoder is designed to separate and extract the high-/low-frequency components of different modalities, thereby improving the extraction of fine details and textures. We also introduce a prompt learning mechanism using positive and negative prompts, leveraging Vision-Language Models to improve the fusion model s understanding and identification of targets in multi-modality images, leading to improved performance in downstream tasks. Furthermore, we employ bi-level asymptotic convergence optimization. This approach simplifies the intricate non-singleton non-convex bi-level problem into a series of convergent and differentiable single optimization problems that can be effectively resolved through gradient *** approach advances the state-of-the-art, delivering superior fusion quality and boosting the performance of related downstream tasks. Project page: https://***/hey-it-s-me/PromptFusion.