版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:广东工业大学计算机学院 广州番禺职业技术学院信息工程学院
出 版 物:《广东工业大学学报》 (Journal of Guangdong University of Technology)
年 卷 期:2025年
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金资助项目(61972102) 广州市科技计划项目(2023A04J1729)
主 题:块对角引导 多视角聚类 多视角图学习 一致性 无监督学习
摘 要:基于图的多视角聚类方法得到了广泛的研究。然而,现有方法仍然存在两个问题:(1)有些方法虽然将相似矩阵划分为一致性矩阵和不一致性矩阵,但难以处理被错误划分到不一致性矩阵中的一致性信息,导致有效信息不能得到充分提取。(2)有些方法虽然得到了具有块对角结构的统一相似矩阵,但没有去除统一相似矩阵中的冗余信息。为了解决这两个问题,本文提出了一种块对角引导的多视角一致性学习(Multi-view Consistency Learning with Block Diagonal Guidance, MCLBDG)方法。首先,该方法通过低秩表示和自适应邻域的方式获得每个视角的相似矩阵;其次,将每个视角的相似矩阵划分为一致性矩阵和不一致性矩阵。其中,不同视角的不一致性部分通过哈达玛积来筛选。在迭代过程中,被错误划分的一致性部分可以从不一致性信息中逐步提取出来。此外,提出了块对角引导来尽可能去除统一相似矩阵中的冗余信息,减少了不同簇样本之间的干扰。最后,将谱聚类应用到模型当中,直接得到聚类结果。在几个常用数据集上的比较实验验证了该方法的优越性。