版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Xinjiang Univ Coll Math & Syst Sci Urumqi 830046 Peoples R China
出 版 物:《COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION》 (Comm. Nonlinear Sci. Numer. Simul.)
年 卷 期:2025年第143卷
核心收录:
学科分类:07[理学] 0701[理学-数学] 0702[理学-物理学] 0801[工学-力学(可授工学、理学学位)] 070101[理学-基础数学]
基 金:National Natural Science Foundation of China Research Fund from the Key Laboratory of Xinjiang Province [2022D04014]
主 题:Darcy-Brinkman equations Double-diffusive convection Regularity estimations Incremental pressure correction method Stability and convergence
摘 要:In this paper, the 2D/3D unsteady incompressible Darcy-Brinkman equations with double- diffusive convection are considered. Firstly, several a priori regularity estimates of the weak solutions are derived, and then two fully decoupled incremental pressure correction finite element methods (IPC FEMs) are proposed, i.e., the first-order and second-order standard IPC (SIPC) methods. Based on the above regularity results, the unconditional stability and optimal error estimates for the first-order SIPC method are proved, and then the unconditional stability for the second-order SIPC method is established. Some numerical experiments are carried out to illustrate the effectiveness of the proposed methods.