咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Adaptive signal processing of ... 收藏

Adaptive signal processing of asset price dynamics with predictability analysis

有可预测性分析的财产价格动力学的适应信号处理

作     者:Mamon, Rogemar S. Erlwein, Christina Gopaluni, R. Bhushan 

作者机构:Univ Western Ontario Western Sci Ctr Dept Stat & Actuarial Sci London ON N6A 5B7 Canada Brunel Univ Sch Informat Syst Comp & Math CARISMA Uxbridge Middx England Univ British Columbia Dept Chem & Biol Engn Vancouver BC V5Z 1M9 Canada 

出 版 物:《INFORMATION SCIENCES》 (信息科学)

年 卷 期:2008年第178卷第1期

页      面:203-219页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:British Academy, (OCG-41559) Marie Curie 

主  题:Hidden Markov model optimal parameter estimation regime-switching model gold price 

摘      要:In this paper we illustrate the optimal filtering of log returns of commodity prices in which both the mean and volatility are modulated by a hidden Markov chain with finite state space. The optimal estimate of the Markov chain and the parameters of the price model are given in terms of discrete-time recursive filters. We provide an application on a set of high frequency gold price data for the period 1973-2006 and analyse the h-step ahead price predictions against the Diebold-Kilian metric. Within the modelling framework where the mean and volatility are switching regimes, our findings suggest that a two-state hidden Markov model is sufficient to describe the dynamics of the data and the gold price is predictable up to a certain extent in the short term but almost impossible to predict in the long term. The proposed model is also bench-marked with ARCH and GARCH models with respect to price predictability and forecasting errors. (C) 2007 Published by Elsevier Inc.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分