版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:青海师范大学计算机学院青海西宁810016 省部共建藏语智能信息处理及应用国家重点实验室青海西宁810008
出 版 物:《中文信息学报》 (Journal of Chinese Information Processing)
年 卷 期:2024年第38卷第12期
页 面:106-115页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:新一代人工智能国家科技重大专项(2022ZD0116100) 青海省重点研发项目(2022-GX-104)
主 题:自然语言处理 藏文大模型 参数高效微调 增量预训练 指令微调
摘 要:大模型是指拥有庞大参数量的深度学习模型,具备强大的表征学习和生成能力,对自然语言处理等领域产生了深远影响。随着技术的不断进步,大模型在性能和应用范围上不断取得突破,成为人工智能领域的研究热点。然而,大模型的发展也面临着一些挑战,如模型训练成本高、参数冗余以及跨语言应用存在局限性等。特别地,在藏文这一具有独特语言特性的研究领域,大模型的研究尚处于起步阶段,缺乏相应的模型和资源支持。针对上述问题,该文通过基于LoRA的参数高效微调方法,提出了基于Llama2模型架构构建的Tibetan-Llama2和Tibetan-Alpaca模型,经过较大规模数据的增量预训练和指令微调,上述两种模型具备了对藏文的长文本理解和生成能力,展现了其多任务学习能力,并且在多个领域都有广泛的应用前景。