版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:西北师范大学数学与统计学院甘肃兰州730070 西北师范大学学报编辑部甘肃兰州730070
出 版 物:《西北师范大学学报(自然科学版)》 (Journal of Northwest Normal University(Natural Science))
年 卷 期:2025年第61卷第1期
页 面:117-124,I0005页
学科分类:1305[艺术学-设计学(可授艺术学、工学学位)] 13[艺术学] 1002[医学-临床医学] 081104[工学-模式识别与智能系统] 08[工学] 0804[工学-仪器科学与技术] 081101[工学-控制理论与控制工程] 100204[医学-神经病学] 0811[工学-控制科学与工程] 10[医学]
主 题:情绪识别 面部特征 特征脸 Le-Net5卷积神经网络
摘 要:人脸面部情绪通常分为开心、伤心、害怕、厌恶、生气、惊讶和正常7种类别.由于面部光照不均匀、情绪变化细微等原因导致现有的人脸情绪识别算法准确率较低,为此本文建立了一种基于特征脸的人脸情绪识别算法.首先应用Viola-Jones算法精准检测和定位面部区域,然后使用Gauss滤波对面部图像降噪后再应用Gamma矫正进行光照均匀化处理,得到精准而清晰的面部图像;其次,应用Haar-like特征对左、右眼睛中心点进行精准定位后,结合人体测量学方法对眉毛、眼睛和嘴巴等情绪器官进行定位与分割,构造特征脸,降低非情绪面部区域的信息冗余;最后,引入经典的Le-Net5卷积神经网络提取特征脸的深层次数字特征进行情绪识别.实验结果表明,该方法可以有效提高人脸面部情绪识别的准确性,在JAFFA公开数据集上的准确率可达90.12%,优于几何特征的53.75%和全脸特征的87.46%,而且性能更为稳定.