版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:河北大学网络空间安全与计算机学院河北保定071002 河北省机器视觉工程研究中心河北保定071002
出 版 物:《计算机应用与软件》 (Computer Applications and Software)
年 卷 期:2025年第42卷第1期
页 面:116-123,176页
学科分类:08[工学] 081402[工学-结构工程] 081304[工学-建筑技术科学] 0813[工学-建筑学] 0814[工学-土木工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:为了提升无锚框目标检测模型对物体多尺度检测性能,并实现检测速度与精度的最佳折中,提出一种具有抗锯齿能力的无锚框目标检测模型。下采样操作中,使用分组自适应低通滤波器解决网络中存在的锯齿问题;并联不同空洞率的空洞卷积进行多尺度特征融合,扩大神经元感受野范围。防止在模型训练过程中破坏网络参数,对损失函数进行实验讨论,替换为smooth L1 Loss函数。实验结果表明,在PASCAL VOC数据集上mAP指标达到了82.1%,FPS达到了32,与CenterNet-ResNet101相比,mAP提升了4.3%,FPS提升了18.5%。