版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Montreal Dept Informat & Rech Operat Montreal PQ Canada Princeton Univ Princeton NJ 08544 USA Univ Toulouse LAAS CNRS CNRS INP Toulouse France Univ Montreal CIRRELT Montreal PQ Canada
出 版 物:《MATHEMATICAL PROGRAMMING COMPUTATION》 (Math. Program. Comput.)
年 卷 期:2025年第17卷第2期
页 面:265-306页
核心收录:
学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0835[工学-软件工程] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:FMJH Program PGMO EDF-Thales-Orange Soutien a la Mobilite Internationale (SMI) de Toulouse INP Natural Sciences and Engineering Council of Canada (NSERC) through the Undergraduate Student Research Awards
主 题:Piecewise linear functions Approximation Overestimation Underestimation Guaranteed tolerance Piecewise linear regression with bounded error MINLP MILP Julia package
摘 要:In this paper, we address the problem of approximating and over/under-estimating univariate functions with piecewise linear (PWL) functions with the minimum number of linear segments given a bound on the allowed pointwise approximation error. Through a new geometric approach and building on the work of Ngueveu (Eur J Oper Res 275:1058-1071, 2019), we develop new algorithms that can solve the problem in quasi-logarithmic time on a very broad class of error types. Such algorithms find many applications, mostly related to solving certain classes of (mixed-integer) nonlinear and nonconvex programming (MINLP) problems by mixed-integer linear programming (MILP) techniques. An efficient implementation of our algorithms is available as a Julia package. Benchmarks are also provided to showcase how our method outperforms the state-of-the-art for this problem. Finally, we show how our algorithms can be used to efficiently solve certain classes of MINLP problems through a case study on multicommodity network design problems with congestion.