版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Anhui Wenda Univ Informat Engn Sch Comp Engn Hefei 231200 Peoples R China
出 版 物:《IEEE ACCESS》 (IEEE Access)
年 卷 期:2025年第13卷
页 面:19964-19978页
核心收录:
主 题:Feature extraction Environmental monitoring Data models Accuracy Vectors Long short term memory Predictive models Biological system modeling Visualization Transformers Industrial and mining enterprises integrated environmental monitoring system multimodal LSTM model CLIP model anomaly detection accuracy
摘 要:Addressing the challenges of limited accuracy in anomaly detection within comprehensive environmental monitoring of industrial and mining enterprises, and the constraints posed by singular data modalities, this study proposes an integration of a multimodal Long Short-Term Memory (LSTM) model with the Contrastive Language-Image Pretraining (CLIP) model. The initial phase employs ResNet within the CLIP model for extracting image features, and a Transformer for encoding text features. Subsequently, feature vectors obtained from monitoring images and text are fused using a rudimentary concatenation method to generate a joint embedding representation. Principal Component Analysis (PCA) is then applied to diminish the dimensionality of the amalgamated features derived from environmental monitoring images, descriptive texts, and sensor data collected by industrial and mining enterprises. Finally, a multimodal LSTM model is leveraged to detect anomalies in the monitoring data by capturing long-term dependencies within time series information. The model was trained and evaluated using real-time data from a coal mining enterprise s environmental monitoring system spanning March to September 2023. Results reveal that the multimodal LSTM-CLIP model achieved an anomaly detection accuracy of 0.98 in environmental monitoring, marking a 0.10 improvement over the unimodal LSTM model, with a response time of merely 110.25 milliseconds. These findings underscore the efficacy of the multimodal LSTM-CLIP model in integrating multimodal information, thereby significantly enhancing the accuracy of anomaly detection and the speed of environmental anomaly warnings, ultimately ensuring the safety of industrial and mining enterprises.