版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Tech Univ Munich D-85748 Munich Germany Univ Toulouse AAS CNRS INSA F-31000 Toulouse France
出 版 物:《IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS》 (IEEE Trans Parallel Distrib Syst)
年 卷 期:2025年第36卷第3期
页 面:455-470页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Optimal scheduling Artificial neural networks Scheduling Time factors Pipeline processing Scheduling algorithms Real-time systems Interference Benchmark testing Sun Gang scheduling response time analysis optimal priority assignment Edge TPU real-time system
摘 要:Non-preemptive rigid gang scheduling combines the efficiency of parallel execution with the reduced overhead of non-preemptive scheduling. This approach is particularly advantageous for parallel hardware accelerators, such as Google s Edge Tensor Processing Unit (TPU), which is widely used for deep neural network (DNN) inference on embedded systems. This paper studies sporadic global non-preemptive fixed-priority (NP-FP) rigid gang scheduling, which is well-suited for DNN applications in Edge TPU pipelines. Each gang task spawns a fixed number of threads that must execute concurrently across distinct processing units. We introduce the first carry-in limitation technique specifically designed for gang task response time analysis, addressing the unique challenges posed by intra-task parallelism. This technique is formulated as a generalized knapsack problem, and we develop both a linear programming relaxation and a dynamic programming approach to solve it under different time complexities. Additionally, we propose the first optimal priority assignment policy for NP-FP gang schedulability tests. Our proposed schedulability analysis and optimal priority assignment policy are evaluated through extensive experiments, including both synthetic task sets and a case study using DNN benchmarks on commercial off-the-shelf Edge TPU accelerators. The results demonstrate that the proposed approaches effectively enhance the state-of-the-art global NP-FP gang schedulability tests, achieving improvements of up to 57.9% for synthetic task sets and 76.7% for Edge TPU benchmarks. Furthermore, we conduct an ablations study to examine the impact of different algorithmic components in the proposed technique, providing valuable insights for future research.