版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:河南大学河南省大数据分析与处理重点实验室河南开封475004 中核勘察设计研究有限公司郑州475000 华中科技大学计算机与信息工程学院武汉430074 河南大学计算机与信息工程学院河南开封475004
出 版 物:《河南大学学报(自然科学版)》 (Journal of Henan University:Natural Science)
年 卷 期:2025年第1期
页 面:1-11页
学科分类:08[工学] 080203[工学-机械设计及理论] 082503[工学-航空宇航制造工程] 0802[工学-机械工程] 0825[工学-航空宇航科学与技术]
基 金:河南省高校科技创新团队支持计划(24IRTSTHN021) 河南省研究生教育改革与质量提升工程项目(YJS2024JD30) 河南省研究生教育改革与质量提升工程项目(YJS2023JD28)
摘 要:无人机载平台中的目标检测在军事和民用领域具有重要的应用价值.然而,现有的检测方法通常侧重于多尺度目标检测,缺乏对小目标的优化,且模型复杂度过高,难以在资源受限的机载平台中应用.为此,本文提出了一种面向无人机载平台的轻量级小目标检测算法YOLOH(You Only Look One Head).首先,针对小目标对基准网络优化,移除深层特征以减少模型参数量,增加浅层特征以获取小目标信息.其次,在特征融合部分加入NAM注意力,增强对小目标的感知能力.接着,设计了多感受野聚焦模块MRFF,以挖掘特征图的感受野信息,增强模型的多尺度检测能力.最后,使用LAMP算法对模型剪枝,去除冗余神经元以压缩模型.实验结果表明,与YOLOv8s相比,YOLOH的模型参数量和计算量分别减少了92%和35%,FPS提高了57%.在VisDrone2019和CARPK数据集上AP_(S)分别提高了3.3%和3.7%.与其他轻量级模型相比,所提YOLOH具有最佳的整体性能,同时平衡了模型大小、精度和推理速度,为无人机载平台的目标检测提供了有效的解决方案.