咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Kinematics-informed neural net... 收藏

Kinematics-informed neural network control on SO(3)☆

作     者:Reis, Joel Silvestre, Carlos 

作者机构:Univ Macau Fac Sci & Technol Taipa Macao Peoples R China Univ Lisbon Inst Syst & Robot Inst Super Tecn P-1049001 Lisbon Portugal 

出 版 物:《AUTOMATICA》 (Automatica)

年 卷 期:2025年第174卷

核心收录:

学科分类:0711[理学-系统科学] 0808[工学-电气工程] 07[理学] 08[工学] 070105[理学-运筹学与控制论] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 0701[理学-数学] 071101[理学-系统理论] 

基  金:Macao Science and Technology Development Fund [FDCT/0192/2023/RIA3, FDCT/0059/2024/RIA1] University of Macau, Macau, China [MYRG2022-00205-FST, MYRG-GRG2023-00107-FST-UMDF, SRG2024-00012-FST] LARSyS FCT, Portugal 

主  题:Attitude control systems Neural networks Machine learning control Special orthogonal group 

摘      要:This paper presents an adaptive geometric control method for dynamic-model-free attitude tracking on the manifold of 3D rotations (SO(3)). Utilizing well-established definitions of attitude errors on SO(3), we develop a general control-affine linear error system. The input to this system is implicitly approximated by a kinematics-informed neural network (NN), which serves as the controller. The weights of this NN, designed to be inherently bounded, are adjusted online using a modified gradient- descent strategy that relies solely on system kinematics. We demonstrate the effectiveness and online learning capability of our proposed method through comprehensive simulation results, using a satellite attitude control system as an example. A comparative analysis is also provided to validate our approach. (c) 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分