咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Global sensitivity analysis an... 收藏

Global sensitivity analysis and robustness in linear programming using different norms

作     者:Hladik, Milan 

作者机构:Charles Univ Prague Fac Math & Phys Dept Appl Math Malostranske Nam 25 Prague 1 Czech Republic 

出 版 物:《CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH》 (Cent. Eur. J. Oper. Res.)

年 卷 期:2025年第33卷第3期

页      面:661-677页

核心收录:

学科分类:02[经济学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 

基  金:Grantov Agentura Ccaron esk Republiky [25-15714 S.] Czech Science Foundation 

主  题:Linear programming Sensitivity analysis Robustness Tolerance analysis Matrix norm NP-hardness 

摘      要:Sensitivity analysis in linear programming is a standard technique for measuring the effects of variations in one coefficient on the optimal value and optimal solution. However, one-coefficient variations are too simple to reflect the complexity of real-life situations. That is why we propose a more general approach and consider variations of possibly all input data. The goal is to determine the maximum variations of the data in a given norm such that the computed optimal basis remains optimal. We present general results valid for an arbitrary norm, and then we focus particularly on the spectral norm and the maximum norm. Further, we analyse computational complexity of the problem, and for the computationally hard cases we derive efficiently computable lower and upper bounds. Besides the basic case, in which we allow variations of all input coefficients, we also consider variations of certain submatrices or along a certain pattern. Eventually, we present results of numerical experiments, where we analysed and compared computation time and accuracy of the proposed approximations on a collection of dataset.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分