版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Charles Univ Prague Prague Czech Republic Univ Wurzburg Wurzburg Germany
出 版 物:《JOURNAL OF SCHEDULING》 (J. Scheduling)
年 卷 期:2025年第28卷第1期
页 面:139-156页
核心收录:
学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0802[工学-机械工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Charles University project UNCE [24/SCI/008] GACR [24-10306 S] DFG [Wo758/11-1] Projekt DEAL
主 题:High-multiplicity jobs Cutting stock Hardness Parameterized complexity
摘 要:The task of scheduling jobs to machines while minimizing the total makespan, the sum of weighted completion times, or a norm of the load vector are among the oldest and most fundamental tasks in combinatorial optimization. Since all of these problems are in general NP-hard, much attention has been given to the regime where there is only a small number k of job types, but possibly the number of jobs n is large;this is the few job types, high-multiplicity regime. Despite many positive results, the hardness boundary of this regime was not understood until now. We show that makespan minimization on uniformly related machines (Q|HM|Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q|HM|C_{\max }$$\end{document}) is NP-hard already with 6 job types, and that the related Cutting Stock problem is NP-hard already with 8 item types. For the more general unrelated machines model (R|HM|Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|HM|C_{\max }$$\end{document}), we show that if the largest job size pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\max }$$\end{document} or the number of jobs n is polynomially bounded in the instance size |I|, there are algorithms with complexity |I|poly(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|I|{{{\,\ma