版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Chinese Acad Sci Natl Space Sci Ctr Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
出 版 物:《SENSORS》 (Sensors)
年 卷 期:2025年第25卷第4期
页 面:1058-1058页
核心收录:
学科分类:0710[理学-生物学] 071010[理学-生物化学与分子生物学] 0808[工学-电气工程] 07[理学] 0804[工学-仪器科学与技术] 0703[理学-化学]
基 金:Civil Space Technology Advance Research Project D030312
主 题:multi-target tracking point target multiple hypothesis tracking interactive multiple model adaptive model switching
摘 要:In complex environments, traditional multi-target tracking methods often encounter challenges such as strong clutter interference and interruptions in target trajectories, which can result in insufficient tracking accuracy and robustness. To address these issues, this paper presents an improved multi-target tracking algorithm, termed Q-IMM-MHT. This method integrates Multiple Hypothesis Tracking (MHT) with Interactive Multiple Model (IMM) and introduces a Q-learning-based adaptive model switching strategy to dynamically adjust model selection in response to variations in the target s motion patterns. Furthermore, the algorithm utilizes Support Vector Machines (SVMs) for anomaly detection and trajectory recovery, thereby enhancing the accuracy of data association and the overall robustness of the system. Experimental results indicate that under high noise conditions, the Root Mean Square Error (RMSE) of position estimation decreases to 0.74 pixels, while the RMSE of velocity estimation falls to 0.04 pixels/frame. Compared to traditional methods such as the Unscented Kalman Filter (UKF), IMM, and CIMM, the RMSE is reduced by at least 10.84% and 42.86%, respectively. In scenarios characterized by target trajectory interruptions and clutter interference, the algorithm maintains an association accuracy exceeding 46.3% even after 30 frames of interruption, significantly outperforming other methods. These findings demonstrate that the Q-IMM-MHT algorithm offers substantial performance improvements in multi-target tracking tasks within complex environments, effectively enhancing both tracking accuracy and stability, with considerable application value and extensive potential for future use.