版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Center for Machine Intelligence and Data Science IIT Bombay India
出 版 物:《arXiv》 (arXiv)
年 卷 期:2025年
核心收录:
主 题:Laplace transforms
摘 要:Recent applications of kernel methods in machine learning have seen a renewed interest in the Laplacian kernel, due to its stability to the bandwidth hyperparameter in comparison to the Gaussian kernel, as well as its expressivity being equivalent to that of the neural tangent kernel of deep fully connected networks. However, unlike the Gaussian kernel, the Laplacian kernel is not separable. This poses challenges for techniques to approximate it, especially via the random Fourier features (RFF) methodology and its variants. In this work, we provide random features for the Laplacian kernel and its two generalizations: Matérn kernel and the Exponential power kernel. We provide efficiently implementable schemes to sample weight matrices so that random features approximate these kernels. These weight matrices have a weakly coupled heavy-tailed randomness. Via numerical experiments on real datasets we demonstrate the efficacy of these random feature maps. © 2025, CC BY-SA.