版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:KTH Royal Inst Technol Sch Elect Engn & Comp Sci S-10044 Stockholm Sweden TOBB ETU Dept Elect Elect Engn TR-06560 Ankara Turkiye Ericsson Res AB Wireless Access Networks SE-16480 Stockholm Sweden
出 版 物:《IEEE WIRELESS COMMUNICATIONS LETTERS》 (IEEE Wireless Commun. Lett.)
年 卷 期:2025年第14卷第5期
页 面:1496-1500页
核心收录:
学科分类:0810[工学-信息与通信工程] 0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:EU Horizon 2020 MSCA-ITNMETAWIRELESS Swedish Research Council [2019-05068] The 6G-MUSICAL EU project
主 题:Channel estimation Antennas Vectors Multiple signal classification Aperture antennas Parametric statistics Lower bound Covariance matrices Azimuth Approximation algorithms Radiative near-field aperture antennas MUSIC channel estimation Cram & eacute r-Rao lower bound
摘 要:In this letter, we address parametric channel estimation in a multi-user multiple-input multiple-output system within the radiative near-field of the base station array with aperture antennas. We investigate a two-dimensional multiple signal classification algorithm (2D-MUSIC) to estimate both the range and the azimuth angles of arrival for the users channels, utilizing parametric radiative near-field channel models. We analyze the performance of the algorithm by deriving the Cram & eacute;r-Rao bound (CRB) for parametric estimation, and its effectiveness is compared against the least squares estimator, which is a non-parametric estimator. Numerical results indicate that the 2D-MUSIC algorithm outperforms the least squares estimator. Furthermore, the results demonstrate that the performance of 2D-MUSIC achieves the parametric channel estimation CRB, which shows that the algorithm is asymptotically consistent.