咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Unified modeling language code... 收藏
MACHINE LEARNING WITH APPLICATIONS

Unified modeling language code generation from diagram images using multimodal large language models

作     者:Bates, Averi Vavricka, Ryan Carleton, Shane Shao, Ruosi Pan, Chongle 

作者机构:Univ Oklahoma Sch Comp Sci 110 W Boyd St Norman OK 73019 USA MapLarge Enterprise Architecture 1201 Peachtree St NEBldg 400Suite 1750 Atlanta GA USA Florida State Univ Sch Commun 4100 Univ CtrBldg C Tallahassee FL USA 

出 版 物:《MACHINE LEARNING WITH APPLICATIONS》 (Mach. Learn. Appl.)

年 卷 期:2025年第20卷

核心收录:

基  金:U.S. National Science Foundation U.S. Air Force Small Business Innovation Research program 

主  题:UML Large language models Machine learning Code generation 

摘      要:The Unified Modeling Language is a standardized visual language widely used for modeling and documenting the design of software systems. Although many tools are available that generate UML diagrams from UML code, generating executable UML code from image-based UML diagrams remains challenging. This paper proposes a new approach to generate UML code using a large multimodal language model automatically. Synthetic UML activity and sequence diagram datasets were created to train and test the model. We compared the standard fine-tuning with LoRA techniques to optimize base models. The experiments measured the code generation accuracy across different model sizes and training strategies. These results demonstrated that domain-adapted MM-LLMs perform for UML code generation automation, whereby, at the best model, it achieved BLEU and SSIM of 0.779 and 0.942 on sequence diagrams. This will enable the modernization of legacy systems and decrease the manual effort put into software development workflows.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分