咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >An Adaptive Proximal Inexact G... 收藏
arXiv

An Adaptive Proximal Inexact Gradient Framework and Its Application to Per-Antenna Constrained Joint Beamforming and Compression Design

作     者:Fan, Xilai Jiang, Bo Liu, Ya-Feng 

作者机构:State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China Ministry of Education Key Laboratory of NSLSCS School of Mathematical Sciences Nanjing Normal University Nanjing210023 China 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2025年

核心收录:

主  题:Beamforming 

摘      要:In this paper, we propose an adaptive proximal inexact gradient (APIG) framework for solving a class of nonsmooth composite optimization problems involving function and gradient errors. Unlike existing inexact proximal gradient methods, the proposed framework introduces a new line search condition that jointly adapts to function and gradient errors, enabling adaptive stepsize selection while maintaining theoretical guarantees. Specifically, we prove that the proposed framework achieves an ϵ-stationary point within O(ϵ−2) iterations for nonconvex objectives and an ϵ-optimal solution within O(ϵ−1) iterations for convex cases, matching the best-known complexity in this context. We then custom-apply the APIG framework to an important signal processing problem: the joint beamforming and compression problem (JBCP) with per-antenna power constraints (PAPCs) in cooperative cellular networks. This customized application requires careful exploitation of the problem’s special structure such as the tightness of the semidefinite relaxation (SDR) and the differentiability of the dual. Numerical experiments demonstrate the superior performance of our custom-application over state-of-the-art benchmarks for the JBCP. © 2025, CC BY.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分