咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Semi-automatic Vortex Flow Cla... 收藏

Semi-automatic Vortex Flow Classification in 4D PC-MRI Data of the Aorta

在主动脉的 4D PC-MRI 数据的半自动的旋涡流动分类

作     者:Meuschke, M. Koehler, B. Preim, U. Preim, B. Lawonn, K. 

作者机构:Univ Magdeburg Dept Simulat & Graph D-39106 Magdeburg Germany Municipal Hosp Dept Diagnost Radiol Magdeburg Germany Univ Koblenz Landau Inst Computat Visualist Mainz Germany 

出 版 物:《COMPUTER GRAPHICS FORUM》 (计算机图形学论坛)

年 卷 期:2016年第35卷第3期

页      面:351-360页

核心收录:

学科分类:08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Categories and Subject Descriptors (according to ACM CCS) I.4.9 [Computer Graphics]: Image Processing and Computer Vision&mdash Applications 

摘      要:We present an Aortic Vortex Classification (AVOCLA) that allows to classify vortices in the human aorta semi-automatically. Current medical studies assume a strong relation between cardiovascular diseases and blood flow patterns such as vortices. Such vortices are extracted and manually classified according to specific, unstandardized properties. We employ an agglomerative hierarchical clustering to group vortex-representing path lines as basis for the subsequent classification. Classes are based on the vortex size, orientation and shape, its temporal occurrence relative to the cardiac cycle as well as its spatial position relative to the vessel course. The classification results are presented by a 2D and 3D visualization technique. To confirm the usefulness of both approaches, we report on the results of a user study. Moreover, AVOCLA was applied to 15 datasets of healthy volunteers and patients with different cardiovascular diseases. The results of the semi-automatic classification were qualitatively compared to a manually generated ground truth of two domain experts considering the vortex number and five specific properties.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分