咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Metric Subregularity of Multif... 收藏

Metric Subregularity of Multifunctions: First and Second Order Infinitesimal Characterizations

多功能的公制的 Subregularity : 首先并且第二订无穷小的描述

作     者:Huynh Van Ngai Phan Nhat Tinh 

作者机构:Univ Quy Nhon Dept Math Quy Nhon Vietnam Hue Univ Sci Dept Math Hue Vietnam 

出 版 物:《MATHEMATICS OF OPERATIONS RESEARCH》 (运筹学数学)

年 卷 期:2015年第40卷第3期

页      面:703-724页

核心收录:

学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Vietnam Institute for Advanced Study in Mathematics NAFOSTED of Vietnam 

主  题:error bound metric subregularity coderivative contingent derivative 

摘      要:Metric subregularity and regularity of multifunctions are fundamental notions in variational analysis and optimization. Using the concept of strong slope, in this paper we first establish a criterion for metric subregularity of multifunctions between metric spaces. Next, we use a combination of abstract coderivatives and contingent derivatives to derive verifiable first order conditions ensuring metric subregularity of multifunctions between Banach spaces. Then using second order approximations of convex multifunctions, we establish a second order condition for metric subregularity of mixed smooth-convex constraint systems, which generalizes a result established recently by Gfrerer

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分