咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Cascadic multigrid methods for... 收藏

Cascadic multigrid methods for parabolic problems

Cascadic multigrid methods for parabolic problems

作     者:DU Qiang MING PingBing 

作者机构:Department of MathematicsPennsylvania State UniversityUniversity ParkPA 16802USA LSECInstitute of Computational Mathematics and Scientific/Engineering ComputingAMSSChinese Academy of SciencesBeijing 100190China 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2008年第51卷第8期

页      面:1415-1439页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:the National Science Foundation(Grant Nos.DMS0409297,DMR0205232,CCF-0430349) US National Institute of Health-National Cancer Institute(Grant No.1R01CA125707-01A1) the National Natural Science Foundation of China(Grant No.10571172) the National Basic Research Program(Grant No.2005CB321704) the Youth's Innovative Program of Chinese Academy of Sciences(Grant Nos.K7290312G9,K7502712F9) 

主  题:cascadic multigrid method parabolic problem finite element methods backward Euler scheme smoother stability optimal error order optimal complexity 65N30 65N55 65F10 

摘      要:In this paper,we consider the cascadic multigrid method for a parabolic type *** Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the *** new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular *** error bound sare derived for both smooth and non-smooth *** strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分