版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Chinese Acad Sci Sch Comp & Control Engn Beijing 100049 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100864 Peoples R China Chinese Acad Sci Inst Automat Res Ctr Brain Inspired Intelligence Beijing 100190 Peoples R China Chinese Acad Sci Inst Comp Technol Key Lab Intell Info Proc Beijing 100190 Peoples R China Univ Texas San Antonio Dept Comp Sci San Antonio TX 78249 USA
出 版 物:《INFORMATION SCIENCES》 (信息科学)
年 卷 期:2017年第376卷
页 面:125-135页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Natural Science Foundation of China
主 题:Explicit representation Implicit representation Semantic modeling Image classification
摘 要:Image classification refers to the task of automatically classifying the categories of images based on the contents. This task is typically solved using visual features with the histogram based classification scheme. Although effective, this strategy has two drawbacks. On one hand, histogram based representation often disregards the object layout which is very important for classification. On the other hand, visual features are unable to fully separate different images due to the semantic gap. To solve these two problems, in this paper, we propose a novel image classification method by explicitly and implicitly representing the images with searching strategy. First, to make use of object layouts, we randomly select a number of regions and then use these regions for image representations. Second, we generate the explicitly semantic representations using a number of pre-learned semantic models. Third, we measure the visual similarities with the Internet images and use the text information for implicitly semantic representations. Since Internet images are contaminated with noise, the resulting representations only implicitly reflect the contents of images. Finally, both the explicitly and implicitly semantic representations are jointly modeled for image classifications by training bi-linear classifiers. We evaluate the effectiveness of the proposed image classification by search with explicitly and implicitly semantic representations method (EISR) on the Scene-15 dataset, the MIT-Indoor dataset, the UIUC-Sports dataset and the PASCAL VOC 2007 dataset. The experimental results prove the usefulness of the proposed method. (C) 2016 Elsevier Inc. All rights reserved.