版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:IPNASB 68 Nezavisimosti Ave Minsk 220072 BELARUS Natl Inst Environm Studies Ctr Global Environm Res 16-2 Onogawa Tsukuba Ibaraki 3058506 Japan Tomsk State Univ 36 Lenin Ave Tomsk 634050 Russia Univ Wollongong Sch Chem Ctr Atmospher Chem Wollongong NSW 2522 Australia Univ Bremen Inst Environm Phys D-28334 Bremen Germany Univ Wollongong Sch Chem Northfields Ave Wollongong NSW 2522 Australia Karlsruhe Inst Technol IMK ASP D-76344 Karlsruhe Germany FMI Arctic Res Ctr Tiihteltintie 62 FIN-99600 Sodankyla Finland Natl Inst Water & Atmospher Res NIWA Private Bag 50061 Omakau Central Otago New Zealand Karlsruhe Inst Technol IMK IFU D-82467 Garmisch Partenkirchen Germany
出 版 物:《JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER》 (定量光谱学与辐射传递杂志)
年 卷 期:2017年第189卷
页 面:258-266页
核心收录:
学科分类:070207[理学-光学] 07[理学] 08[工学] 0703[理学-化学] 0803[工学-光学工程] 0702[理学-物理学]
基 金:Belarusian Republican Foundation for Fundamental Research (BRFFR) [F15CO-023] Tomsk State University Academic D.I. Mendeleev Fund Program under the Grant of the Ministry for Education and Science of the Russian Federation [5.628.2014/K] NASA [NNX14AI60G, NNX11AG01G, NAG5-12247, NNG05-GD07G] NASA Orbiting Carbon Observatory Program Australian Research Council [DP140101552, DP110103118, DP0879468, LP0562346] Australian Research Council-Discovery Early Career Researcher Award [DE140100178] Academy of Finland EU under project GAIA-CLIM EU within INGOS ESA ghg-cci project EU projects InGOS ICOS-INWIRE Senate of Bremen RAMCES team at LSCE NIVVA through New Zealand's Ministry of Business, Innovation and Employment
主 题:Carbon dioxide Retrieval algorithm Empirical orthogonal function GOSAT TCCON
摘 要:This paper presents a novel retrieval algorithm for the rapid retrieval of the carbon dioxide total column amounts from high resolution spectra in the short wave infrared (SWIR) range observations by the Greenhouse gases Observing Satellite (GOSAT). The algorithm performs EOF (Empirical Orthogonal Function)-based decomposition of the measured spectral radiance and derives the relationship of limited number of the decomposition coefficients in terms of the principal components with target gas amount and a priori data such as airmass, surface pressure, etc. The regression formulae for retrieving target gas amounts are derived using training sets of collocated GOSAT and ground -based observations. The precision/accuracy characteristics of the algorithm are analyzed by the comparison of the retrievals with those from the Total Carbon Column Observing Network (TCCON) measurements and with the modeled data, and appear similar to those achieved by full-physics retrieval algorithms. (C) 2016 Elsevier Ltd. All rights reserved.