版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:浙江工业大学信息工程学院光纤通信与信息工程研究所浙江杭州310023
出 版 物:《激光与光电子学进展》 (Laser & Optoelectronics Progress)
年 卷 期:2016年第53卷第11期
页 面:93-101页
核心收录:
学科分类:08[工学] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金(61275124 61405178 61205121)
主 题:图像处理 图像去噪 字典学习 非局部平均 梯度重权法
摘 要:为从强噪声图像中重构出原图像并减小误差,提出了一种基于梯度重权非局部平均的强噪声图像去噪算法。根据稀疏和冗余表示,基于K-SVD字典学习去噪算法可自适应从已知带噪图像中训练字典,但是字典固有的结构限制,导致强噪声图像去噪效果差。提出了基于字典学习的梯度重权非局部平均算法,该算法对图像结构赋予更紧约束,可以改善去噪性能。利用全变分法求解图像结构的梯度,给予图像边缘信息更高的权重,结合图像结构信息的相似性和稀疏性先验,求解优化后的逆问题。与传统字典去噪相比,所提出的算法对强噪声图像的去噪效果更好,并保留了细节轮廓信息,具备较好的峰值信噪比和结构相似性。